Llamafile
LiteLLM supports all models on Llamafile.
| Property | Details | 
|---|---|
| Description | llamafile lets you distribute and run LLMs with a single file. Docs | 
| Provider Route on LiteLLM | llamafile/(for OpenAI compatible server) | 
| Provider Doc | llamafile ↗ | 
| Supported Endpoints | /chat/completions,/embeddings,/completions | 
Quick Start
Usage - litellm.completion (calling OpenAI compatible endpoint)​
llamafile Provides an OpenAI compatible endpoint for chat completions - here's how to call it with LiteLLM
To use litellm to call llamafile add the following to your completion call
- model="llamafile/<your-llamafile-model-name>"
- api_base = "your-hosted-llamafile"
import litellm 
response = litellm.completion(
            model="llamafile/mistralai/mistral-7b-instruct-v0.2", # pass the llamafile model name for completeness
            messages=messages,
            api_base="http://localhost:8080/v1",
            temperature=0.2,
            max_tokens=80)
print(response)
Usage - LiteLLM Proxy Server (calling OpenAI compatible endpoint)​
Here's how to call an OpenAI-Compatible Endpoint with the LiteLLM Proxy Server
- Modify the config.yaml
model_list:
  - model_name: my-model
    litellm_params:
      model: llamafile/mistralai/mistral-7b-instruct-v0.2 # add llamafile/ prefix to route as OpenAI provider
      api_base: http://localhost:8080/v1 # add api base for OpenAI compatible provider
- Start the proxy
$ litellm --config /path/to/config.yaml
- Send Request to LiteLLM Proxy Server
- OpenAI Python v1.0.0+
- curl
import openai
client = openai.OpenAI(
    api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
    base_url="http://0.0.0.0:4000" # litellm-proxy-base url
)
response = client.chat.completions.create(
    model="my-model",
    messages = [
        {
            "role": "user",
            "content": "what llm are you"
        }
    ],
)
print(response)
curl --location 'http://0.0.0.0:4000/chat/completions' \
    --header 'Authorization: Bearer sk-1234' \
    --header 'Content-Type: application/json' \
    --data '{
    "model": "my-model",
    "messages": [
        {
        "role": "user",
        "content": "what llm are you"
        }
    ],
}'
Embeddings​
- SDK
- PROXY
from litellm import embedding   
import os
os.environ["LLAMAFILE_API_BASE"] = "http://localhost:8080/v1"
embedding = embedding(model="llamafile/sentence-transformers/all-MiniLM-L6-v2", input=["Hello world"])
print(embedding)
- Setup config.yaml
model_list:
    - model_name: my-model
      litellm_params:
        model: llamafile/sentence-transformers/all-MiniLM-L6-v2 # add llamafile/ prefix to route as OpenAI provider
        api_base: http://localhost:8080/v1 # add api base for OpenAI compatible provider
- Start the proxy
$ litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
- Test it!
curl -L -X POST 'http://0.0.0.0:4000/embeddings' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{"input": ["hello world"], "model": "my-model"}'